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CHAPTER

ONE

QUICKSTART GUIDE

1.1 Installation and configuration

1.1.1 With Bioconda

conda install segway

1.1.2 Generic installation

1. To install Segway first install GMTK, and install HDF5, then run this command from bash:

pip install segway

2. If you are using SGE, your system administrator must set up a mem_requested resource for Segway to work.
This can be done by installing Segway and then running python -m segway.cluster.sge_setup.

1.2 Acquiring data

3. Observation data is stored with the genomedata system. <http://pmgenomics.ca/hoffmanlab/proj/genomedata/>.
There is a small Genomedata archive for testing that comes with Segway, that is used in the below steps. You can
get it using:

wget http://pmgenomics.ca/hoffmanlab/proj/segway/2011/test.genomedata

1.3 Running Segway

4. Use the segway train command to discover patterns in the test data. Here, we specify that we want Segway
to discover four unique patterns:

segway train --num-labels=4 test.genomedata traindir

5. Use the segway identify command to create the segmentation, which partitions the genome into regions
labeled with one of the four discovered patterns:

segway identify test.genomedata traindir identifydir

3

https://github.com/melodi-lab/gmtk/releases
http://www.hdfgroup.org/downloads/index.html
http://pmgenomics.ca/hoffmanlab/proj/genomedata/


Segway Documentation, Release 3.0.4

Note: This example spawns jobs that will run sequentially due to small segment size. See the --split-sequences
option for dividing segments into smaller pieces.

1.4 Results

6. The identifydir/segway.bed.gz file has each segment as a separate line in the BED file, and can be used
for further processing.

7. The identifydir/segway.layered.bed.gz file is designed for easier visualization on a genome
browser. It has thick lines where a segment is present and thin lines where it is not. This is not as easy for a
computer to parse, but it is more useful visually.

8. You can also perform further analysis of the segmentation and trained parameters using Segtools <http://
pmgenomics.ca/hoffmanlab/proj/segtools/>.

4 Chapter 1. Quickstart Guide
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CHAPTER

TWO

SEGWAY 3.0.4 OVERVIEW

2.1 Installation

With the Conda environment manager and the additional Bioconda channel, Segway can be installed with the command:

conda install segway

Alternatively without Bioconda, the following prerequisites must be installed for Segway:

You need Python 2.7, or Python 3.6 or later versions.

You need Graphical Models Toolkit (GMTK), which you can get at <https://github.com/melodi-lab/gmtk/releases>.

You need the HDF5 serial library and tools. The following packages are necessary for the OS you are running:

Ubuntu/Debian:

sudo apt-get install libhdf5-serial-dev hdf5-tools

CentOS/RHEL/Fedora:

sudo yum -y install hdf5 hdf5-devel

OpenSUSE:

sudo zypper in hdf5 hdf5-devel libhdf5

Afterwards Segway can be installed automatically with the command pip install segway.

Note: Segway may not install with older versions of pip (< 6.0) due to some of its dependencies requiring the newer
version. To upgrade your pip version run pip install pip –upgrade.

2.1.1 Standalone configuration

Segway can be run without any cluster system. This will automatically be used when Segway fails to access any cluster
system. You can force it by setting the SEGWAY_CLUSTER environment variable to local. For example, if you are using
bash as your shell, you can run:

SEGWAY_CLUSTER=local segway

By default, Segway will use up to 32 concurrent processes when running in standalone mode. To change this, set the
SEGWAY_NUM_LOCAL_JOBS environment variable to the appropriate number.

5
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2.1.2 Cluster configuration

If you want to use Segway with your cluster, you will need the drmaa>=0.4a3 Python package.

You need either Sun Grid Engine (SGE; now called Oracle Grid Engine), Platform Load Sharing Facility (LSF) and
FedStage DRMAA for LSF, Slurm workload manager, or Torque/PBS/PBS Pro (experimental).

If FedStage DRMAA for LSF is installed, Segway should be ready to go on LSF out of the box.

If you are using the Slurm workload manager with versions past 18, it is recommended you install a DRMAA driver based
on an updated fork since the original implementation is no longer updated or maintained. We currently test our Slurm
support using https://github.com/natefoo/slurm-drmaa.

If you are using SGE, someone with cluster manager privileges on your cluster must have Segway installed within their
PYTHONPATH or systemwide and then run python -m segway.cluster.sge_setup. This sets up a con-
sumable mem_requested attribute for every host on your cluster for more efficient memory use.

2.2 The workflow

Segway accomplishes four major tasks from a single command-line. It–

1. generates an unsupervised segmentation model and initial parameters appropriate for this data;

2. trains parameters of the model starting with the initial parameters; and

3. identifies or annotates segments in this data with the model.

4. calculates posterior probability for each possible segment label at each position.

Note: The verbs “identify” and “annotate” are synonyms when using Segway. They both describe the same task and
may be used interchangably.

2.2.1 Technical description

More specifically, Segway performs the following steps:

1. Acquires data in genomedata format

2. Generates an appropriatemodel for unsupervised segmentation (segway.str, segway.inc) for use byGMTK

3. Generates appropriate initial parameters (input.master or input.*.master) for use by GMTK

4. Writes the data in a format usable by GMTK

5. Call GMTK to perform expectation maximization (EM) training, resulting in a parameter file (params.params)

6. Call GMTK to perform Viterbi decoding of the observations using the generated model and discovered parameters

7. Convert the GMTK Viterbi results into BED format (segway.bed.gz) for use in a genome browser, or by
Segtools <http://pmgenomics.ca/hoffmanlab/proj/segtools/>, or other tools

8. Call GMTK to perform posterior decoding of the observations using the generated model and discovered parame-
ters

9. Convert the GMTK posterior results into bedGraph format (posterior.seg*.bedGraph.gz) for use in a
genome browser or other tools

10. Use a distributed computing system to parallelize all of the GMTK tasks listed above, and track and predict their
resource consumption to maximize efficiency

6 Chapter 2. Segway 3.0.4 Overview
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11. Generate reports on the established likelihood at each round of training (likelihood.*.tab)

The identify and posterior tasks can run simultaneously, as they depend only on the results of train, and not each other.

2.3 Data selection

Segway accepts data only in the Genomedata format. The Genomedata package includes utilities to convert from BED,
wiggle, and bedGraph formats. By default, Segway uses all the continuous data tracks in a Genomedata archive. Multiple
Genomedata archives can be specified to be used in data selection as long as each archive refers to the same sequence and
do not have overlapping track names.

Note: Segway does not allowmulitple genomedata archives to contain equivalent tracks names. However if your archives
have tracks with matching track names, you may explictly specify to Segway the track names that do not overlap in other
genomedata archives and Segway will run as normal.

2.3.1 Tracks

You may specify a subset of tracks using the --track option which may be repeated. For example:

segway --track dnasei --track h3k36me3

will include the two tracks dnasei and h3k36me3 and no others.

You can run a concatenated segmentation by separating tracks with a comma. For example:

segway --track dnasei.liver,dnasei.blood --track h3k36me3.liver,h3k36me3.blood

2.3.2 Positions

By default, Segway runs analyses on the whole genome. This can be incredibly time-consuming, especially for training. In
reality, training (and even identification) on a smaller proportion of the genome is often sufficient. There are also regions
as the genome such as those containing many repetitive sequences, which can cause artifacts in the training process.
The --exclude-coords=file and --include-coords=file options specify BED files with regions that should
be excluded or included respectively. If both are specified, then inclusions are processed first and the exclusions are then
taken out of the included regions.

Note: BED format uses zero-based half-open coordinates, just like Python. This means that the first nucleotide on
chromosome 1 is specified as:

chr1 0 1

The UCSC Genome Browser and Ensembl web interfaces, as well as the wiggle formats use the one-based fully-closed
convention, where it is called chr1:1-1.

For example, the ENCODE Data Coordination Center at University of California Santa Cruz keeps the coordinates of
the ENCODE pilot regions in this format for `(GRCh37/hg19) http://hgdownload.cse.ucsc.edu/goldenPath/hg19/en-
codeDCC/referenceSequences/encodePilotRegions.hg19.bed`_

and

2.3. Data selection 7
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`(NCBI36/hg18) http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/encodeRegions.txt.gz`_. For human
whole-genome studies, these regions have nice properties since they mark 1 percent of the genome, and were carefully
picked to include a variety of different gene densities, and a number of more limited studies provide data just for these
regions. All coordinates are in terms of the GRCh37 assembly of the human reference genome (also called hg19 by
UCSC).

After reading in data from a Genomedata archive, and selecting a smaller subset with --exclude-coords and
--include-coords, the final included regions are referred to as windows, and are supplied to GMTK for infer-
ence. There is no direction connection between the data in different windows during any inference process–the windows
are treated independently.

An alternative way to speed up training is to use the --minibatch-fraction=frac option, which will cause
Segway to use a fraction frac or more of genomic positions, chosen randomly at each training iteration. The
--exclude-coords=file and --include-coords=file options still apply when using minibatch. The fraction
will only apply to the resulting chosen coordinates. For example, using --minibatch-fraction=0.01 will use
a different random one percent of the genome for each training round. This will allow training to have access to the
whole genome for training while maintaining fast iterations. Using this option will select on the basis of windows, so the
fraction of the genome chosen will be closer to the specified fraction if the windows are small (but the chosen fraction
will always be at least as large as specified). Therefore, it is best to combine –minibatch-fraction with –split-sequences.
The likelihood-based training stopping criterion is no longer valid with minibatch training, so training will always run to
–max-train-rounds (100, by default) if –minibatch-fraction is set.

An alternative way to choose the winning set of parameters is available through the --validation-fraction=frac
or --validation-coords options. Specifying a fraction frac to --validation-fraction will cause Segway
to choose a fraction frac or more of genomic positions as a held-out validation set. --validation-coords=file
allows one to explicitly specify genomic coordinates in a BED-format file, to be used as a validation set. When using
either of these options, Segway will evaluate the model after each training iteration on the validation set and will choose
the winning set of parameters based on whichever set gives the best validation set likelihood across all instances.

Note: --exclude-coords is applied to --validation-coords but --include-coords is not. This
allows the user to easily specify regions of the genome that should not be considered by Segway overall, while also
allowing them to specify a set of validation coordinates in a straightforward manner.

2.3.3 Resolution

In order to speed up the inference process, you may downsample the data to a different resolution using the
--resolution=res option. This means that Segway will partition the input observations into fixed windows of size
res and perform inference on the mean of the observation averaged along the fixed window. This can result in a large
speedup at the cost of losing the highest possible precision. However, if you are considering data that is only generated at
a low resolution to start with, this can be an appealing option.

Warning: You must use the same resolution for both training and identification.

In semi-supervised mode, with the resolution option enabled, the supervision labels are also downsampled to a lower
resolution, but by a different method. In particular, segway will partition the input supervision labels into fixed windows
of size res and use a modified ‘mode’ to choose which label will represent that window during training. This modified
‘mode’ works according to the following rules:

1) In general, segway takes the highest-count nonzero label in a given resolution-sized window to be the mode for that
window.

2) In the case of ties, segway takes the lowest nonzero label.

8 Chapter 2. Segway 3.0.4 Overview
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3) Segway takes the mode to be 0 (no label) if and only if all elements of the window are 0.

2.4 Model generation

Segway generates a model (segway.str) and initial parameters (input.master) appropriate to a dataset using the
GMTKL specification language and the GMTK master parameter file format. Both of these are described more fully in
the GMTK documentation (cite), and the default structure and starting parameters are described more fully in the Segway
article.

The starting parameters are generated using data from the whole genome, which can be quickly found in the Genomedata
archive. Even if you are training on a subset of the genome, this information is not used.

You can tell Segway just to generate these files and not to perform any inference using the --dry-run option.

Using --num-instances=starts will generate multiple copies of the input.master file, named input.0.
master, input.1.master, and so on, with different randomly picked initial parameters. Segway training results
can be quite dependent on the initial parameters selected, so it is a good idea to try more than one. I usually use
–num-instances=10`.

Using --mixture-components will set the number of Gaussian mixture components per label to use in the model
(default 1).

Using --var-floor will set the variance floor for the model, meaning that if any of the variances of a track falls below
this value, then the variance will be floored (prohibited from falling below the floor value). This is by default turned off
if not using a mixture of Gaussians; if using a mixture of Gaussians, then it has a default value of 1e-5.

Warning: You should know the scale of your data and set an appropriate variance floor if the scale is very small.

You may substitute your own input.master files but I recommend starting with a Segway-generated template. This
will help avoid some common pitfalls. In particular, if you are going to perform training on your model, you must ensure
that the input.master file retains the same #ifdef structure for parameters you wish to train. Otherwise, the values
discovered after one round of training will not be used in subsequent rounds, or in the annotate or posterior stages.

You can use the --num-labels=labels option to specify the number of segment labels to use in the model (default 2).
You can set this to a single number or a range with Python slice notation. For example, --num-labels=5:20:5 will
result in 5, 10, and 15 labels being tried. If you specify --num-instances=starts, then there will be starts different
instances for each of the labels labels tried.

The question of finding the right number of labels is a difficult one. Mathematical criteria, such as the Bayesian information
criterion, would usually suggest using higher numbers of labels. However, the results are difficult for a human to interpret
in this case. This is why we usually use ~25 labels for a segmentation of dozens of input tracks. If you use a small number
of input tracks you can probably use a smaller number of labels.

There is an experimental --num-sublabels=sublabels option that enables hierarchical segmentation, where each
segment label is divided into a number of segment sublabels, each one with its own Gaussian emission parameters. The
output segmentation will be defined according to the --output-label=output_label option, by default seg, which
will output by (super) segment label as normal. subseg will output in terms of individual sublabels, only printing out the
sublabel part, and full will print out both the superlabel and the sublabel, separated by a period. For example, a coordinate
assigned superlabel 1 and sublabel 0 would display as “1.0”. Using this feature effectively may require manipulation of
model parameters.

Segway allows multiple models of the values of a continuous observation tracks using three different probability
distributions: a normal distribution (--distribution=norm), a normal distribution on asinh-transformed data
(--distribution=asinh_norm, the default), or a gamma distribution (--distribution=gamma). For
gamma distributions, Segway generates initial parameters by converting mean μ and variance σ2 to shape k and scale

2.4. Model generation 9
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theta using the equations μ = kθ and σ2 = kθ2. The ideal methodology for setting gamma parameter values is less
well-understood. I recommend the use of asinh_norm in most cases.

2.4.1 Virtual Evidence

To use virtual evidence [pearl1988] in Segway, the user specifies a prior probability that a genomic region has a particularly
labelled state. In this sense, virtual evidence is a form of semi-supervised learning.

Users supplying virtual evidence while running an entire task together (for example, train or annotate) will supply the
virtual evidence file with --virtual-evidence. Users supplying virtual evidence while running steps for a task
one at a time will need to specify --virtual-evidence during the init step in order to properly generate the input
files such as input.master and the triangulation file. During annotate and posterior a file can be supplied with the
--virtual-evidence option to the init step however it may not be changed during run.

The virtual evidence file supplied to --virtual-evidence should be of BED3+2, tab-delimited, format where the
4th column is the label index and the fifth column is the prior. For example,

chr1 0 1000 0 0.9

will specify a prior probabilty of 0.9 on label 0 for the region of chr1 from 0 to 1000.

If running on multiple concatenated segmentations (worlds), the VE file is in BED3+3 format instead, and the world
number must be specified for each row in the last column. If this is omitted and a BED3+2 file is submitted instead, the
virtual evidence will be applied to all worlds instead. For example, with two worlds,

chr1 0 1000 0 0.9 0

chr1 0 1000 1 0.05 1

These examples specify prior probabilities over the region of chr1 from 0 to 1000 for both worlds. A prior probability of
0.9 on label 0 for the first world and a prior probability of 0.05 on label 1 for the second world.

At positions for which some labels are given a prior by the user but other labels not, the remaining probability is uniformly
distributed amongst the leftover labels. For example, with 4 labels:

chr1 0 1000 0 0.4

all labels but label 0 would be given a prior probability of (1-0.4)/3=0.2.

2.4.2 Model Customization

You can supply your own custom or modified models to Segway by using the --structure option. The model is
defined by the syntax that GMTK uses. To learn more about using GMTK to create your own models there the GMTK
documentation.

2.4.3 Segment duration model

Hard length constraints

The --seg-table=file option allows specification of a segment table that specifies minimum and maximum segment
lengths for various labels. By default, the minimum segment length is the ruler length and it is set for all labels. Here is
an example of a segment table:

label len
1:4 200:2200:50
0 200::50
4: 200::50

10 Chapter 2. Segway 3.0.4 Overview
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The file is tab-delimited, and the header line with label in one column and len in another is mandatory. The first
column specifies a label or range of labels to which the constraints apply. In this column, a range of label values may
be specified using Python slice syntax, so label 1:4 specifies labels 1, 2, and 3. Using 4: for a label, as in the last row
above, means all labels 4 or higher.

The second column specifies three colon-separate values: the minimum segment length, maximum segment length, and
the ruler. In the example above, for labels 1, 2 and 3, segment lengths between 200 and 2200 are allowed, with a 50 bp
ruler. If either the minimum or maximum lengths are left unspecified, then no corresponding constraint is applied. If the
ruler is left unspecified the default or set value from the --ruler-scale option is used.

The ruler is an efficient heuristic that decreases the memory used during inference at the cost of also decreasing the
precision with which the segment duration model acts. Essentially, it allows the duration model to switch the behavior of
the rest of the model only after a multiple of scale bp has passed. Note that the ruler must match all other ruler entries in
this file, as well as the option set with --ruler-scale=scale. (This may become more free in the future.)

Due to the lack of an epilogue in the model, it is possible to get one segment per sequence that actually does not meet the
minimum segment length. This is expected and will be fixed in a future release.

Note that increasing hard minimum or maximum length constraints will greatly increase memory use and run time. You
can decrease this performance penalty by increasing ruler size (which makes the precision of the duration model a little
coarser), or by using the soft length priors below.

Use these segment lengths along with the supervised learning feature with caution. If you try to create something impos-
sible with your supervision labels, such as defining a 2300-bp region to have label 1, which you have already constrained
to have a maximum segment length of 2200, GMTK will produce the dreaded zero clique error and your training run will
fail. Don’t do this. In practice, due to the imprecision introduced by the 200-bp ruler, a region labeled in the supervision
process with label 1 that is only 2000 bp long may also cause the training process to fail with a zero clique error. If this
happens either decrease the size of the ruler, increase the size of the maximum segment length, or decrease the size of
the supervision region.

Soft length prior

There is also a way to add a soft prior on the length distribution, which will tend to make the expected segment length
100000, but will still allow data that strongly suggests another length control. The default expected segment length of
100000 can’t be changed at the moment but will in a future version.

You can control the strength of the prior relative to observed transitions with the --prior-strength=strength option.
Setting --prior-strength=1 means there are as many pseudocounts due to the prior as the number of nucleotides
in the training regions.

The --segtransition-weight-scale=scale option controls the strength of the prior in another way. It controls
the strength of the length prior relative to the data from the observed tracks. The default scale of 1 gives the soft transition
model equal strength to a single data track. Using higher or lower values gives comparatively greater or lesser weight
to the probability from the soft length prior, essentially allowing the prior to have more votes in determining where a
segment boundary is. The impact of the prior will be a function of both --segtransition-weight-scale and
--prior-strength.

One may effectively use the hard length constraints and soft length priors simultaneously.

2.4. Model generation 11
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2.5 Task selection

Segway will perform either (a) model generation and training or (b) identification separately, so it is possible to train on
a subset of the genome and annotate on the whole thing. To train, use:

segway train GENOMEDATA TRAINDIR

To annotate, run Segway from the same directory you ran the train task above and specify the TRAINDIR from the results
of your training:

segway annotate GENOMEDATA TRAINDIR IDENTIFYDIR

In both cases, replace GENOMEDATA with the Genomedata archive you’re using. The use of --dry-run will cause
Segway to generate appropriate model and observation files but not to actually perform any inference or queue any jobs.
This can be useful when troubleshooting a model or task.

2.6 Train task

Most users will generate themodel at training time, but to specify your ownmodel there are the--structure=filename
and --input-master=filename options. You can simultaneously run multiple instances of EM training in parallel,
specified with the --instances=instances option. Each instance consists of a number of rounds, which are broken
down into individual tasks for each training region. The results from each region for a particular instance and round are
combined in a quick bundle task. It results in the generation of a parameter file like params.3.params.18 where
3 is the instance index and 18 is the round index. Training for a particular instance continues until at least one of these
criteria is met:

• the likelihood from one round is only a small improvement from the previous round; or

• 100 rounds have completed.

Specifically, the “small improvement” is defined in terms of the current likelihood 𝐿𝑛 and the log likelihood from the
previous round 𝐿𝑛−1, such that training continues while⃒⃒⃒⃒

log𝐿𝑛 − log𝐿𝑛−1

log𝐿𝑛−1

⃒⃒⃒⃒
≥ 10−5.

This constant will likely become an option in a future version of Segway.

As EM training produces diminishing returns over time, it is likely that one can obtain acceptably trained parameters well
before these criteria are met. Training can be a time-consuming process. You may wish to train only on a subset of your
data, as described in Positions.

When all instances are complete, Segway picks the parameter set with the best likelihood and copies it to params.
params.

There are two different modes of training available, unsupervised and semisupervised.

12 Chapter 2. Segway 3.0.4 Overview
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2.6.1 Unsupervised training

By default, Segway trains in unsupervised mode, which is a form of clustering. In this mode, it tries to find recurring
patterns suggested by the data without any additional preconceptions of which regions should be tied together.

2.6.2 Semisupervised training

Using the --semisupervised=file option, one can specify a BED file as a list of regions used as supervision labels.
The name field of the BED File specifies a label to be enforced during training. For example, with the line:

chr3 400 800 2

one can enforce that these positions will have label 2. You might do this if you had specific reason to believe that these
regions were enhancers and wanted to find similar patterns in your data tracks. Using smaller labels first (such as 0) is
probably better. Supervision labels are not enforced during the annotate task, and therefore cannot be specified during
annotate.

You can also choose to specify a soft assignment for the supervision label. For example, with the line:

chr3 400 800 0:5

one can enforce that these positions will have a label in the range of [0,5). In other words, the label will be restricted to
one of {0, 1, 2, 3, 4}. You may want to do this if you know the apparence of the patterns in the regions but you believe
they might belong to more than one label. For soft assignment currently we only support a fixed size of the range of labels.
For example, you may specify 0:5 and 3:8 in a single supervision label BED file, but you can’t specify 0:5 (range size 5)
and 6:8 (range size 2).

To simulate fully supervised training, simply supply supervision labels for the entire training region.

None of the supervision labels can overlap with each other. You should combine any overlapping labels before specifying
them to Segway.

It is also possible for nonoverlapping labels to violate the ruler constraints set by Segway for GMTK. This happens when
your supervision labels specify a transition that doesn’t fall on a ruler boundary. For example, if your supervision labels
are directly adjacent, such as:

chr1 10 20 0:2
chr1 20 30 2:4

and your ruler is set so it won’t allow a transition to occur on 20 then your jobs will terminate with a ‘zero clique’ error.
To resolve this, either avoid having directly adjacent superivison labels or, if possible, set –ruler-scale=1 and run Segway
again.

2.6.3 General options

The --dont-train=file option specifies a file with a newline-delimited list of parameters not to train. By default, this
includes the dpmf_always, start_seg, and all GMTK DeterministicCPT parameters. You are unlikely to use this
unless you are generating your own models manually.

2.6. Train task 13
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Seeding

Segway can be forced to run with a specified random number generator seed by setting the SEGWAY_RAND_SEED
environment variable. This is an optional for Segway and is primarily useful for reproducing results future results or
debugging . For example, if you are using bash as your shell you can run:

SEGWAY_RAND_SEED=1498730685

To set the random number generator seed to the number 1498730685. If you decide to seed the random number generator,
it is recommended to pick a number unique for your own usage.

2.6.4 Recovery

Since training can take a long time, this increases the probability that external factors such as a system failure will cause a
training run to fail before completion. You can use the --recover=dirname option to specify a previous work directory
you’re recovering from.

2.7 Annotate task

The annotatemode of Segway uses the Viterbi algorithm to decode the most likely path of segments, given data and a set
of parameters, which can come from the train task. Annotate runs considerably more quickly than training. While the
underlying inference task is very similar, it must be completed on each region of interest only once rather than hundreds
of times as in training.

You must run annotate from the same directory from where the train task was run. You can either manually set indi-
vidual input master, parameter, and structure files, or implicitly use the files generated by the train task completed in
traindir, and referenced in traindir/train.tab. If you are using training data from an old version of Segway, you must
either create a train.tab file or specify the parameters manually, using --structure, --input-master, and
--trainable-params.

The --bed=bedfile option specifies where the segmentation should go. If bedfile ends in .gz, then Segway uses gzip
compression. The default is segway.bed.gz in the working directory.

You can load the generated BED files into a genome browser. Because the files can be large, I recommend placing them
on your web site and supplying the URL to the genome browser rather than uploading the file directly. When using the
UCSC genome browser, the bigBed utility may be helpful in speeding access to parts of a segmentation.

The output is in BED format (http://genome.ucsc.edu/FAQ/FAQformat.html#format1), and includes columns for chro-
mosome, start, and end (in zero-based, half-open format), and the label. Other columns to the right are used for display
purposes, such as coloring the browser display, and can be safely ignored for further processing. We use colors from
ColorBrewer (http://colorbrewer2.org/).

2.7.1 Recovery

The --recover=dirname allows recovery from an interrupted annotate task. Segway will requeue jobs that never
completed before, skipping any windows that have already completed.

14 Chapter 2. Segway 3.0.4 Overview
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2.7.2 Creating layered output

Segway produces BED files as output with the segment label in the name field. While this is the most sensible way
of interchanging the segmentation with other programs, it can be difficult to visualize. To solve this problem, Segway
will also produce a layered BED file with rows for each possible Segment label and thick boxes at the location of each
label. This is what we show in the screenshot figure of the Segway article. This is much easier to see at low levels of
magnification. The layers are also labeled, removing the need to distinguish them exclusively by color. While Segway
automatically creates these files at the end of an annotate task, you can also use segway-layer wit ha standard BED
segmentation to repeat the layering process, which you may want to do if you want to add mnemonic labels instead of the
initial integers used as labels. segway-layer supports the use of standard input and output by using - as a filename,
following a common Unix convention.

The mnemonic files used by Segway and Segtools have a simple format. They are tab-delimited files with a header that
has the following columns: old, new, and description. The old column specifies the original label in the BED
file, which is always produced as an integer by Segway. The new column allows the specification of a short alphanumeric
mnemonic for the label. The description column is unused by segway-layer, but you can use it to add helpful
annotations for humans examining the list of labels, or to save label mnemonics you used previously. The row order of
the mnemonic file matters, as the layers will be laid down in a similar order. Mnemonics sharing the same alphabetical
prefix (for example, A0 and A1) or characters before a period (for example, 0.0 and 0.1) will be rendered with the
same color.

segtools-gmtk-parameters in the Segtools package can automatically annotate an initial hierarchical labeling
of segmentation parameters. This can be very useful as a first approximation of assigning meaning to segment labels.

A simple mnemonic file appears below:

old new description
0 TSS transcription start site
2 GE gene end
1 D dead zone

2.8 Posterior task

The posterior inference task of Segway estimates for each position of interest the probability that the model has a par-
ticular resolution-sized section given the data. The posterior output does not fall on segment boundaries since segment
duration is itself probabilistically modeled. This information is delivered in a series of numbered BED files, one for each
segment label. In hierarchical segmentation mode, setting the –output-label option to full or subseg will cause segway to
produce a wiggle file for each sublabel instead, identified using the label and the sublabel in the file name before the file
extension. For example, the bedGraph file for label 0, and sublabel 1 would be called posterior0.1.bedGraph.
The individual values will vary from 0 to 100, showing the percentage probability at each position for the label in that file.
In most positions, the value will be 0 or 100, and substantially reproduce the Viterbi path determined from the annotate
task. The posterior task uses the same options for specifying a model and parameters as annotate.

Posterior results can be useful in determining regions of ambiguous labeling or in diagnosing new models. The mostly
binary nature of the posterior assignments is a consequence of the design of the default Segway model, and it is possible
to design a model that does not have this feature. Doing so is left as an exercise to the reader.

You may find you need to convert the bedGraph files to bigWig format first to allow small portions to be uploaded to a
genome browser piecewise.

2.8. Posterior task 15
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2.8.1 Recovery

Recovery is not yet supported for the posterior task.

2.9 SegRNA

To use SegRNA [segrna2020] with stranded transcriptome datasets, the user provides one track per strand. Then for each
dataset, the user species the tracks for each strand with the --track option separated by a comma. For example:

segway --track long.polyA.forward,long.polyA.reverse

This command runs Segway in concatenated mode with long.polyA.forward in world 0 and long.polyA.reverse in world
1. To mimic the direction in which we usually read reverse strand data, from right to left, the user need to set the
--reverse-world option to the world representing reverse strand data. For example:

segway --track long.polyA.forward,long.polyA.reverse --reverse-world=1

2.10 Modular interface

Segway additionally supports running the tasks in a more modular manner. Each task is subdivided into 3 common steps:

init: Generates all input files, but does not submit any jobs to GMTK (besides triangulate). At the end of this step the
input.master, segway.str, auxillary files, tri files, and the window.bed will all be generated.

run: Submits jobs to GMTK. Produces params and viterbi files.

finish: Selects the best training and identify instances and uses these to generate the output files.

run-round: This step is specific to training. It will run a single round of training and then stop, allowing a user to view
results and modify files.

The desired step may be selected by adding it to the task with a hyphen seperating the two, in the form <task>-<step>.
For example, to run init for the train step, a user would call segway train-init GENOMEDATA TRAINDIR

2.11 Python interface

I have designed Segway such that eventually one may call different components directly from within Python.

You can then call the appropriate module through its main() function with the same arguments you would use at the
command line. For example:

from segway import run

GENOMEDATA_DIRNAME = "genomedata"

run.main(["train", "--random-starts=3", GENOMEDATA_DIRNAME])

All other interfaces (the ones that do not use a main() function) to Segway code are undocumented and should not be
used. If you do use them, know that the API may change at any time without notice.
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2.12 Command-line usage summary

All programs in the Segway distribution will report a brief synopsis of expected arguments and options when the --help
option is specified and version information when --version is specified.

2.12.1 Utilities

2.13 Environment Variables

SEGWAY_CLUSTER
Forces segway to use a specific cluster environment. Setting this to ‘local’ forces segway to use run locally and use
no cluster environment.

SEGWAY_NUM_LOCAL_JOBS
Sets the maximum number of jobs when running locally.

SEGWAY_RAND_SEED
Sets the seed for the random number generator. This is useful for reproducing results.

2.14 Running Segway for large jobs

It is highly recommended that a terminal mutliplexer, such as tmux or GNU screen, is used to manage your terminal
sessions running Segway. Using either of these programs allows you to create a session to run longer segway jobs that
you can safely detatch from without losing your work. For more information, see their respective documentation.

2.15 Helpful commands

Here are some short bash scripts or one-liners that are useful:

There used to be a recipe here to continue Segway from an interrupted training run, but this has been replaced by the
–old-directory option.

Make a tarball of parameters and models from various directories:

(for DIR in traindir1 traindir2; do
echo $DIR/{auxiliary,params/input.master,params/params.params,segway.str,
→˓triangulation}
done) | xargs tar zcvf training.params.tar.gz

Rsync parameters from $REMOTEDIR on $REMOTEHOST to $LOCALDIR:

rsync -rtvz --exclude output --exclude posterior --exclude viterbi \
--exclude observations --exclude "*.observations" --exclude accumulators \
$REMOTEHOST:$REMOTEDIR $LOCALDIR

Print all last likelihoods:

for X in likelihood.*.tab; \
do dc -e "8 k $(tail -n 2 $X | cut -f 1 | xargs echo | sed -e 's/-//g') \
sc sl ll lc - ll / p"; \
done

2.12. Command-line usage summary 17
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Recover as much as possible from an incomplete identification run without completing it (which can be done with
–old-directory. Note that this does not combine adjacent lines of same segment. BEDTools might be able to do this
for you. You will have to create your own header.txt with appropriate track lines.
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CHAPTER

THREE

TECHNICAL MATTERS

3.1 Working files

Segway must create a number of working files in order to accomplish its tasks, and it does this in the directory specified
by the required workdir argument. When running training workdir is TRAINDIR; when running identification workdir is
IDENTIFYDIR.

The observation files can be quite large, taking up 8 bytes per track per position and cannot be compressed. As a result
they are written out to a temporary directory on an as-needed basis. This is because otherwise they could take terabytes
for identifying on the whole human genome with dozens of tracks.

You will find a full description of all the working files in theWorkdir files section.

3.2 Temporary files

The identify and posterior tasks create temporary observation files in directories indicated by the Python tempfile.get-
tempdir() function, which searches for an appropriate directory as described in the documentation for tempfile.tempdir
<https://docs.python.org/2/library/tempfile.html#tempfile.tempdir>. If you need to specify that temporary files go into
a particular directory, set the TMPDIR environment variable. It is highly recommended that you ensure that you temporary
directory does not reside on a slow storage medium such as a NFS filesystem. Since many temporary files are created and
deleted this can significantly impact performance.

3.3 Distributed computing

Segway can currently perform the training, identification, and posterior tasks only using a cluster controllable with the
DRMAA interface. We have only tested it against Sun Grid Engine and Platform LSF, but it should be possible to work
with other DRMAA-compatible distributed computing systems, such as PBS Pro, PBS/TORQUE, Condor, or GridWay.
If you are interested in using one of these systems, please open an issue on Github <https://github.com/hoffmangroup/
segway/issues/new> to correct all the fine details. A standalone option exists when you set the SEGWAY_CLUSTER
environment variable to local. Try installing the free Open Grid Scheduler on your workstation if you want to run Segway
without a full clustering system.

The --cluster-opt option allows the specification of native options to your clustering system — those options you
might pass to qsub (SGE) or bsub (LSF).
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3.4 Memory usage

Inference on complex models or long sequences can be memory-intensive. In order to work efficiently when it is not
always easy to predict memory use in advance, Segway controls the memory use of its subtasks on a cluster with a
trial-and-error approach. It will submit jobs to your clustering system specifying the amount of memory they are ex-
pected to take up. Your clustering system should allocate these jobs such that the amount of memory on one host is not
overcommitted. If a job takes up more memory than allocated, then it will be killed and restarted with a larger amount of
memory allocated, along the progression specified in gibibytes by --mem-usage=progression. The default progression
is 2,3,4,6,8,10,12,14,15.

We usually train on regions of nomore than 2,000,000 frames, where a single frame contains the number of nucleotides set
by the --resolution option. If you use more than that many, GMTKmight run out of dynamic range. This manifests
itself as a “zero clique error.” Identify mode rescales probabilities at every frame so that this is not a problem. However,
you will probably want to split the input sequences somewhat because larger sequences make more difficult work units
(greater memory and run time costs) and thereby impede efficient parallelization. The --split-sequences=size
option will split up sequences into windows with size base pairs each. The default size is 2,000,000. Decreasing to
500,000 will greatly improve speed at the cost of more artefacts at split boundaries.

3.5 Reporting

Segway produces a number of logs of its activity during tasks, which can be useful for analyzing its performance or
troubleshooting. These are all in the workdir/log directory.

3.5.1 Shell scripts

Segway produces three shell scripts in the log directory that you can use to replay its subtasks at different levels of
abstractions. The top-level segway.sh records the command line used to run Segway. The run.sh script gives you
the GMTK commands called by Segway. A small number of these are still produced when --dry-run is specified. The
details.sh script contains the exact commands dispatched by Segway, including wrapper commands that monitor
memory usage, create and delete local temporary files with observation data, and convert GMTK’s output to BED, among
other things.

Segway also writes a cmdline directory in both the traindir and identifydir. Each instance has its own folder,
and for each job segway queues, a shell script (with the job’s name) is written containing the GMTK command of the
queued job.

For example, traindir/cmdline/0/emt0.0.0.uuid.sh is the shell script containing the GMTK commands
and arguments for job emt0.0.0.uuid in instance 0 of training.

3.5.2 Summary reports

The jobs.*.tab file contains a tab-delimited file with each job Segway dispatched for this instance in a different
row, reporting on job identifier (jobid), job name (jobname), GMTK program (prog), number of segment labels
(num_segs), number of frames (num_frames), maximummemory usage (maxvmem), CPU time (cpu) and exit/er-
ror status (exit_status). Jobs are written as they are completed. The exit status is useful for determining whether
the job succeeded (status 0) or failed (any other value, which is sometimes numeric, and sometimes text, depending on
the clustering system used).

The likelihood.*.tab files each track the progression of likelihood during a single instance of EM training. The
file has a single column, one for each round of training, which contains the log likelihood. More positive values are better.
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3.5.3 GMTK reports

Thejt_info.txt andjt_info.posterior.txt files describe howGMTKbuilds a junction tree. It is of interest
primarily during GMTK troubleshooting. You are unlikely to use it.

3.5.4 Task output

The output directory contains the output of the actual GMTK commands run by Segway. The o directory contains
standard output and the e directory contains standard error. If a job fails and repeats, the output from the new job
is appended to the old. The --verbosity=verbosity option controls how much diagnostic information that GMTK
writes into these files. The default and minimum value is 0. Raise this value for more information, and see the GMTK
documentation for a description of various levels of verbosity. Setting verbosity=30 can be particularly helpful
in diagnosing model problems. Keep in mind that very high values (above 60) will produce tons of output===maybe
terabytes.

Warning: Running Segway in identify mode with non-zero verbosity is currently not supported and may result in
errors.

3.6 Performance

Some factors that affect compute time and memory requirements:

• the length of the longest region you are training or identifying on

• the number of tracks

• the number of labels

The longest region forms a bottleneck during training because Segway cannot start the next round of training before all
regions in the previous round are done. So if you specify three regions, one of which is 10 Mbp long, and the other are
100 kbp, the 10 Mbp region is going to be a limiting factor. You can use --split-sequences (see above) to put an
upper bound on region size.

3.7 Names used by Segway

3.7.1 Workdir files

Segway expects to be able to create many of these files anew. To avoid data loss, by default, it will quit if they already
exist. If you use the --clobber option, Segway will overwrite the whole workdir instead.

Filename Description
accumulators/ intermediate files used to pass E-step results to the M-step of EM training
→ acc.*.bin accumulator for a particular instance and region (reused each round)
auxiliary/ miscelaneous model files
→ dont_train.list defines list of hidden random variables that are not trained
→ segway.inc C preprocessor (cpp) include file used in structure
cmdline shell scripts containing commandlines/arguments of individual GMTK jobs
cmdline/0,1,.../ GMTK job shell scripts for a particular training instance(0,1,…)

continues on next page
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Table 1 – continued from previous page
Filename Description
cmdline/identify/ GMTK job shell scripts for identification
intermediate files containing best training filenames per instance
→ train_result.*.tab per instance information containing the filenames of the params resulting in the best

likelihood
likelihood/ GMTK’s report of the log likelihood for the most recent M-step of EM training
→ likelihood.*.ll contains text of the last log likelihood value for an instance. Segway uses this to

decide when to stop training
→ validation.output.*.ll contains text of the last validation GMTK output for an instance
→ validation.output.winner.*.ll contains text of the current best validation GMTK output for an instance
→ validation.sum.*.ll contains text of the last validation set log likelihood for an instance
→ validation.sum.winner.*.ll contains text of the current best validation set log likelihood for an instance
log/ diagnostic information
→ details.sh script file that includes the exact command-lines queued by Segway, with wrapper

scripts
→ jobs.*.tab

tab-delimeted summary of jobs queued per instance,
including resource informatoin and exit status

→ jt_info.txt log file used by GMTK when creating a junction tree
→ jt_info.posterior.txt log file used by GMTK when creating a junction tree in posterior mode
→ likelihood.*.tab tab-delimited summary of log likelihood by training instance; can be used to examine

how fast training converges
→ validation.sum.*.tab tab-delimited summary of full validation set log likelihood by training instance
→ validation.output.*.tab tab-delimited summary of validation log likelihood for each window in the validation

set by training instance
→ run.sh list of commands run by Segway, not including wrappers that create and clean up

temporary files such as observations used during identification
→ segway.sh reports the command-line used to run Segway itself
→ *.*.float32 continuous data for a particular region
→ *.*.int indicator data (present/absent) for a particular region
→ float32.list list of continuous data files
→ int.list list of indicator data files
output/ diagnostic output of individual GMTK jobs
output/e/ stderr
output/e/0,1,… stderr for a particular training instance (0, 1, …)
output/e/identify stderr for identification
output/o/ stdout
params/ generated and trained parameters for a given instance
→ input.*.master generated hyperparameters and starting parameters
→ input.master best set of hyperparameters and starting parameters
→ params.*.params.* trained parameters for a given instance and round
→ params.*.params final trained parameters for a given instance
→ params.params best final set of trained parameters
segway.bed.gz segmentation in BED format
segway.str dynamic Bayesian network structure
train.tab important file locations and hyperparameters used in training, to be passed to identify
triangulation/ triangulation files used for DBN interface
→ segway.str.*.*.trifile triangulation file
viterbi/ intermediate BED files created during distributed Viterbi decoding, which get

merged into segway.bed.gz
window.bed a BED file containing chromosome regions and the indicies Segway assigns to them
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3.7.2 Job names

In order to watch Segway’s progress on your cluster, it is helpful to understand how it names jobs. A job name for the
training task might look like this:

emt0.1.34.traindir.ed03201cea2047399d4cbcc4b62f9827

In this example, emt means expectation maximization training, the 0 means instance 0, the 1 means
round 1, and the 34 means window 34. The name of the training directory is traindir, and
ed03201cea2047399d4cbcc4b62f9827 is a universally unique identifier for this particular Segway run. This
can be useful if you want to manage all of your jobs on your clustering system with wildcard specification. On SGE you
can delete all the jobs from this run with:

qdel "*.ed03201cea2047399d4cbcc4b62f9827"

On LSF, use:

bkill -J "*.ed03201cea2047399d4cbcc4b62f9827"

Jobs created in the identify (vit) or posterior (jt) task are named similarly:

vit34.identifydir.4f32630d53724f08b34a8fc58793307d
jt34.identifydir.4f32630d53724f08b34a8fc58793307d

Of course, there are no instances or rounds for the identify task, so only the sequence index is reported.

3.7.3 Tracks

Tracks are named according to their name in the Genomedata archive. For GMTK internal use, periods are converted to
underscores.
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FOUR

FREQUENTLY ASKED QUESTIONS

4.1 How do I troubleshoot errors that occur in the training or identi-
fication process?

See Troubleshooting and Task output.

4.2 How do I make segments longer?

There are several ways to do this:

• Soft weight constraints:

– --segtransition-weight-scale will increase the strength of the soft length prior for longer
segments. --prior-strength also does this but empirically seems to have less of an effect than
--segtransition-weight-scale

• Hard weight constraints

– The --seg-table option will allow you to specify a hard minimum segment length, as described here.

– Downsampling resolution

See Segment duration model for model related methods.

4.3 How can I make Segway go faster?

• Train on smaller portion of the genome. Use the --include-coords option and supply a BED file.

• Splitting up into smaller subsequences by reducing –split-sequences can also help.
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CHAPTER

FIVE

TROUBLESHOOTING

When Segway reports an error, it usually means that dispatched GMTK jobs failed somehow. Look in log/jobs.tab
to see all the jobs and whether they reported an error in the form of nonzero exit status in the last column. If the job had
a “75” exit status (or an “EX_TEMPFAIL”) the job simply ran out of memory. If this was the last job with this error,
increase the allowed memory in your -mem-usage option. Otherwise if the job had a non-zero exit status and it wasn’t
due to out of memory issues, look in output/e/instance/jobname to find the cause of the underlying error. See Task
output for more output information.

Are your bundle jobs failing? This might be because an accumulator file (written by individual job) is corrupted or
truncated. This can happen when you run out of disk space.

If it is not immediately apparent why a job is failing, it is probably useful to look in log/details.sh to find the
command line that Segway uses to call GMTK. Try running that to see if it gives you any clues. You may want to switch
the GMTK option -verbosity 0 to -verbosity 30 to get more information.

An error like

ERROR: discrete observed random variable ‘presence_dnase’, frame 0, line 23, specifies a feature element
14:14 that is out of discrete range ([23:45] inclusive) of observation matrix

probably indicates that you are incorrectly mixing andmatching train.tab files and segway.str files from different
training runs.

If you are unable to reslove your issue on your own, consider inquiring on the mailing list <segway-users@uw.edu> listed
on the Support page.
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CHAPTER

SIX

SUPPORT

For support of Segway, please write to the <segway-users@uw.edu> mailing list, rather than writing the authors directly.
Using the mailing list will get your question answered more quickly. It also allows us to pool knowledge and minimize
redundant inquiries. You can subscribe here:

https://listserv.utoronto.ca/cgi-bin/wa?A0=segway-l

Specifically, if you want to report a bug or request a feature, please do so using the Segway issue tracker at:

https://github.com/hoffmangroup/segway/issues

If you do not want to read discussions about other people’s use of Segway, but would like to hear about new releases and
other important information, please subscribe to <segway-announce@uw.edu> by visiting this web page:

https://listserv.utoronto.ca/cgi-bin/wa?A0=segway-announce-l

Announcements of this nature are sent to both segway-users and segway-announce.
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